Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Allergol Immunopathol (Madr) ; 51(3): 99-107, 2023.
Article in English | MEDLINE | ID: covidwho-2325362

ABSTRACT

Bronchiolitis is the most common respiratory infection leading to hospitalization and constitutes a significant healthcare burden. The two main viral agents causing bronchiolitis, respiratory syncytial virus (RSV) and rhinovirus (RV), have distinct cytopathic, immune response, and clinical characteristics. Different approaches have been suggested for subtyping bronchiolitis based on viral etiology, atopic status, transcriptome profiles in blood, airway metabolome, lipidomic data, and airway microbiota. The highest risk of asthma at school age has been in a subgroup of bronchiolitis characterized by older age, high prevalence of RV infection, previous breathing problems, and/or eczema. Regarding solely viral etiology, RV-bronchiolitis in infancy has been linked to a nearly three times higher risk of developing asthma than RSV-bronchiolitis. Although treatment with betamimetics and systemic corticosteroids has been found ineffective in bronchiolitis overall, it can be beneficial for infants with severe RV bronchiolitis. Thus, there is a need to develop a more individualized therapeutic approach for bronchiolitis and follow-up strategies for infants at higher risk of asthma in the future perspective.


Subject(s)
Asthma , Bronchiolitis, Viral , Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Humans , Bronchiolitis/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Asthma/epidemiology , Asthma/prevention & control , Asthma/etiology , Hospitalization , Respiratory Sounds/etiology
2.
Virol Sin ; 37(3): 437-444, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1815255

ABSTRACT

The coronavirus 3C-like (3CL) protease, a cysteine protease, plays an important role in viral infection and immune escape. However, there is still a lack of effective tools for determining the cleavage sites of the 3CL protease. This study systematically investigated the diversity of the cleavage sites of the coronavirus 3CL protease on the viral polyprotein, and found that the cleavage motif were highly conserved for viruses in the genera of Alphacoronavirus, Betacoronavirus and Gammacoronavirus. Strong residue preferences were observed at the neighboring positions of the cleavage sites. A random forest (RF) model was built to predict the cleavage sites of the coronavirus 3CL protease based on the representation of residues in cleavage motifs by amino acid indexes, and the model achieved an AUC of 0.96 in cross-validations. The RF model was further tested on an independent test dataset which were composed of cleavage sites on 99 proteins from multiple coronavirus hosts. It achieved an AUC of 0.95 and predicted correctly 80% of the cleavage sites. Then, 1,352 human proteins were predicted to be cleaved by the 3CL protease by the RF model. These proteins were enriched in several GO terms related to the cytoskeleton, such as the microtubule, actin and tubulin. Finally, a webserver named 3CLP was built to predict the cleavage sites of the coronavirus 3CL protease based on the RF model. Overall, the study provides an effective tool for identifying cleavage sites of the 3CL protease and provides insights into the molecular mechanism underlying the pathogenicity of coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus , Algorithms , Coronavirus/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Machine Learning , Peptide Hydrolases/metabolism , Protease Inhibitors , Viral Proteins/metabolism
3.
Brief Bioinform ; 22(2): 1297-1308, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343641

ABSTRACT

The life-threatening coronaviruses MERS-CoV, SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) have caused and will continue to cause enormous morbidity and mortality to humans. Virus-encoded noncoding RNAs are poorly understood in coronaviruses. Data mining of viral-infection-related RNA-sequencing data has resulted in the identification of 28 754, 720 and 3437 circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2, respectively. MERS-CoV exhibits much more prominent ability to encode circRNAs in all genomic regions than those of SARS-CoV-1/2. Viral circRNAs typically exhibit low expression levels. Moreover, majority of the viral circRNAs exhibit expressions only in the late stage of viral infection. Analysis of the competitive interactions of viral circRNAs, human miRNAs and mRNAs in MERS-CoV infections reveals that viral circRNAs up-regulated genes related to mRNA splicing and processing in the early stage of viral infection, and regulated genes involved in diverse functions including cancer, metabolism, autophagy, viral infection in the late stage of viral infection. Similar analysis in SARS-CoV-2 infections reveals that its viral circRNAs down-regulated genes associated with metabolic processes of cholesterol, alcohol, fatty acid and up-regulated genes associated with cellular responses to oxidative stress in the late stage of viral infection. A few genes regulated by viral circRNAs from both MERS-CoV and SARS-CoV-2 were enriched in several biological processes such as response to reactive oxygen and centrosome localization. This study provides the first glimpse into viral circRNAs in three deadly coronaviruses and would serve as a valuable resource for further studies of circRNAs in coronaviruses.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Circular/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Humans
4.
Intensive Care Med ; 47(7): 761-771, 2021 07.
Article in English | MEDLINE | ID: covidwho-1241594

ABSTRACT

PURPOSE: Acute respiratory distress syndrome (ARDS) is accompanied by a dysfunctional immune-inflammatory response following lung injury, including during coronavirus disease 2019 (COVID-19). Limited causal biomarkers exist for ARDS development. We sought to identify novel genetic susceptibility targets for ARDS to focus further investigation on their biological mechanism and therapeutic potential. METHODS: Meta-analyses of ARDS genome-wide association studies were performed with 1250 cases and 1583 controls in Europeans, and 387 cases and 387 controls in African Americans. The functionality of novel loci was determined in silico using multiple omics approaches. The causality of 114 factors potentially involved in ARDS development was assessed using Mendelian Randomization analysis. RESULTS: There was distinct genetic heterogeneity in ARDS between Europeans and African Americans. rs7967111 at 12p13.2 was functionally associated with ARDS susceptibility in Europeans (odds ratio = 1.38; P = 2.15 × 10-8). Expression of two genes annotated at this locus, BORCS5 and DUSP16, was dynamic but ultimately decreased during ARDS development, as well as downregulated in immune cells alongside COVID-19 severity. Causal inference implied that comorbidity of inflammatory bowel disease and elevated levels of C-reactive protein and interleukin-10 causally increased ARDS risk, while vitamin D supplementation and vasodilator use ameliorated risk. CONCLUSION: Our findings suggest a novel susceptibility locus in ARDS pathophysiology that implicates BORCS5 and DUSP16 as potentially acting in immune-inflammatory processes. This locus warrants further investigation to inform the development of therapeutic targets and clinical care strategies for ARDS, including those induced by COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Genome-Wide Association Study , Humans , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , White People/genetics
5.
JAMA Netw Open ; 4(1): e2034569, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1049542

ABSTRACT

Importance: Acute respiratory distress syndrome (ARDS) confers high mortality risk among critically ill patients. Identification of biomarkers associated with ARDS risk may guide clinical diagnosis and prognosis. Objective: To systematically evaluate the association of blood metabolites with ARDS risk and survival. Design, Setting, and Participants: In this cohort study, data from the Molecular Epidemiology of ARDS (MEARDS) study, a prospective cohort of 403 patients with ARDS and 1227 non-ARDS controls, were analyzed. Patients were recruited in intensive care units (ICUs) at Massachusetts General Hospital and Beth Israel Deaconess Medical Center, both in Boston, Massachusetts, from January 1, 1998, to December 31, 2014. Data analysis was performed from December 9, 2018, to January 4, 2019. Main Outcomes and Measures: Participants were followed up daily for ARDS development defined by Berlin criteria, requiring fulfillment of chest radiograph and oxygenation criteria on the same calendar day during invasive ventilatory assistance. A 2-stage study design was used to explore novel metabolites associated with ARDS risk and survival. Results: Of the 1630 participants from MEARDS who were admitted to the ICU , 403 (24.7%) were diagnosed with ARDS (mean [SD] age, 63.0 [17.0] years; 251 [62.3%] male) and 1227 (75.3%) were at-risk but did not have ARDS (mean [SD] age, 62.3 [16.9] years; 753 [61.4%] male). Mendelian randomization suggested that genetically regulated serum mannose was associated with ARDS risk (odds ratio [OR], 0.64; 95% CI, 0.53-0.78; P = 7.46 × 10-6) in the discovery stage. In the functional validation stage incorporating 83 participants with ARDS and matched at-risk participants in the control group from the ICU, the protective association of mannose with ARDS risk was validated (OR, 0.67; 95% CI, 0.46-0.97; P = .03). Furthermore, serum mannose was associated with 28-day (OR, 0.25; 95% CI, 0.11-0.56; P = 6.95 × 10-4) and 60-day (OR, 0.36; 95% CI, 0.19-0.71; P = 3.12 × 10-3) mortality and 28-day (hazard ratio, 0.49; 95% CI, 0.32-0.74; P = 6.41 × 10-4) and 60-day (hazard ratio, 0.55; 95% CI, 0.37-0.80; P = 2.11 × 10-3) survival. Conclusions and Relevance: In this study, genetically regulated serum mannose appeared to be associated with ARDS risk and outcome, and increased serum mannose at admission was associated with reduced ARDS risk and better survival. These findings could inform prevention and clinical intervention in ARDS cases, which have increased with the expansion of the coronavirus disease 2019 pandemic.


Subject(s)
Mannose/blood , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/mortality , APACHE , Aged , Critical Illness , Female , Humans , Intensive Care Units , Logistic Models , Male , Mendelian Randomization Analysis , Middle Aged , Patient Admission/statistics & numerical data , Prognosis , Proportional Hazards Models , Prospective Studies , Risk Assessment
6.
Metabolism ; 112: 154345, 2020 11.
Article in English | MEDLINE | ID: covidwho-1006302

ABSTRACT

OBJECTIVE: We aimed to examine the associations of obesity-related traits (body mass index [BMI], central obesity) and their genetic predisposition with the risk of developing severe COVID-19 in a population-based data. RESEARCH DESIGN AND METHODS: We analyzed data from 489,769 adults enrolled in the UK Biobank-a population-based cohort study. The exposures of interest are BMI categories and central obesity (e.g., larger waist circumference). Using genome-wide genotyping data, we also computed polygenic risk scores (PRSs) that represent an individual's overall genetic risk for each obesity trait. The outcome was severe COVID-19, defined by hospitalization for laboratory-confirmed COVID-19. RESULTS: Of 489,769 individuals, 33% were normal weight (BMI, 18.5-24.9 kg/m2), 43% overweight (25.0-29.9 kg/m2), and 24% obese (≥30.0 kg/m2). The UK Biobank identified 641 patients with severe COVID-19. Compared to adults with normal weight, those with a higher BMI had a dose-response increases in the risk of severe COVID-19, with the following adjusted ORs: for 25.0-29.9 kg/m2, 1.40 (95%CI 1.14-1.73; P = 0.002); for 30.0-34.9 kg/m2, 1.73 (95%CI 1.36-2.20; P < 0.001); for 35.0-39.9 kg/m2, 2.82 (95%CI 2.08-3.83; P < 0.001); and for ≥40.0 kg/m2, 3.30 (95%CI 2.17-5.03; P < 0.001). Likewise, central obesity was associated with significantly higher risk of severe COVID-19 (P < 0.001). Furthermore, larger PRS for BMI was associated with higher risk of outcome (adjusted OR per BMI PRS Z-score 1.14, 95%CI 1.05-1.24; P = 0.004). CONCLUSIONS: In this large population-based cohort, individuals with more-severe obesity, central obesity, or genetic predisposition for obesity are at higher risk of developing severe-COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Genetic Predisposition to Disease/genetics , Obesity, Abdominal/complications , Obesity, Abdominal/genetics , Body Mass Index , Diabetes Mellitus, Type 2/genetics , Female , Humans , Male , Middle Aged , Overweight/genetics , Risk Factors , SARS-CoV-2/pathogenicity , Severity of Illness Index , Waist Circumference/genetics
7.
Cell Host Microbe ; 27(3): 325-328, 2020 03 11.
Article in English | MEDLINE | ID: covidwho-709361

ABSTRACT

An in-depth annotation of the newly discovered coronavirus (2019-nCoV) genome has revealed differences between 2019-nCoV and severe acute respiratory syndrome (SARS) or SARS-like coronaviruses. A systematic comparison identified 380 amino acid substitutions between these coronaviruses, which may have caused functional and pathogenic divergence of 2019-nCoV.


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/virology , Genome, Viral , Phylogeny , Pneumonia, Viral/virology , Amino Acid Substitution , COVID-19 , China , Middle East Respiratory Syndrome Coronavirus , Pandemics , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL